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a b s t r a c t

We studied how features of thermal resources affect the patterns of activity of predator (Callopistes
maculatus) and its prey (Gyriosomus batesi and Gyriosomus subrugatus) during the phenomenon of the
Flowering Desert in Chile. We predict that restrictions or variations in temperature affect mainly the
activity of insects, and that this variation in the activity of insects affects the patterns of activity of
the predator. The daily activity of the three species was bimodal, but both prey species disappear when
temperatures exceed 40 �C. According to our results, the prey are thermoconformers to air and substrate
temperature, whereas the predator is a thermoregulator to environmental conditions by their inde-
pendence of air and substrate temperature.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Temperature has profound effects on ectothermic animals
(Cossins and Bowler, 1987). It controls nearly all physiological and
biochemical processes, thus determining a considerable number of
life-history traits (Finke, 2003). On a long-term scale (i.e., evolu-
tionary), temperature has important consequences for ectotherms,
determining patterns of daily activity (Alexander, 1999), movement
(Gilbert and Raworth, 1996), body size (Sibly and Atkinson, 1994),
reproduction (Madsen and Shine, 1999), and feeding (Blouin-
Demers and Weatherhead, 2001), whereas on a short-term scale
(i.e., seasonal changes), temperature modified some of these
patterns (Labra et al., 2001).

In desert ecosystems, the pattern of productivity is regulated by
short and infrequent pulses of rainfall (Whitford, 2002). Thus,
productivity may be high, supporting rich but short-lived verte-
brate and invertebrate assemblages (Cossins and Bowler, 1987). In
this context, predatoreprey interactions play a major role in the
structure and function of desert assemblages (Closs and Lake, 1994)

influencing factors mediated by environmental conditions such as
behavior (Peterson, 1987). Thus, the analysis and interpretation of
predator-prey interactions in desert systems associated with
thermal resources are important factors in the ecology of ecto-
thermic organisms such as insects (Heinrich, 1995) and lizards
(Spotila and Standora, 1985). As the cost of adjusting body
temperature close to mean activity temperature in an arid envi-
ronment may be considerable (Al-Johany and Al-Sadoon, 1996), it
could be beneficial for an ectothermic animal in a habitat with
a wide range of temperatures and low food availability not to
maintain a narrow body temperature range (Peterson, 1987). Prey
can influence predators, since prey abundance and quality affect
the feeding rates, growth, and reproductive success of predators
(Torres-Contreras et al., 1994). Also, temporal and spatial changes in
prey availability and vulnerability may have an effect on the
movement, and the spatial and temporal distributional patterns of
predators (Meserve et al., 2003).

The Atacama Desert, located on the western coast of South
America, is the driest desert in the world (Rundel et al., 2007).
There are sites with no recorded rainfall where erosion occurs
primarily from the wind. The "Desierto Florido" (Flowering desert)
is a remarkable phenomenon which usually takes place when El
Niño/Southern Oscillation causes the ocean currents to shift and
direct storms towards the desert that promote a high biodiversity of
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plants, invertebrates, and vertebrates that increases the availability
of resources for predators (Meserve et al., 2003; Pizarro-Araya,
2010).

Callopistes maculatus (Molina, 1782) is a moderate-sized
(81.5e173.0 mm SVL) teiid lizard that inhabits extended sand
burrows in scrubland habitats of northern Chile (Donoso-Barros,
1966; Vidal, 2008). Information available on C. maculatus suggests
that this species feeds mostly on plants, invertebrate animals, small
rodents; Abrothrix olivaceus (Wartherhouse, 1837), and lizards
(Liolaemus) (Castro et al., 1991), and cannibalism has been reported
(Vidal and Ortiz, 2003). In the northern distribution of C. maculatus,
its diet has been described as consisting of abundant invertebrates
from the genus GyriosomusGuérinMeneville,1834. In this area, two
Gyriosomus species (Tenebrionidae) coexist with this lizard
(Pizarro-Araya and Jerez, 2004; Pizarro-Araya et al., 2008): G. batesi
Fairmaire, 1876, and G. subrugatus Fairmaire, 1876. It has been
described that C. maculatus feeds on these two species (Reyes,
1998), whose relative abundances fluctuate between a Flowering
Desert year (i.e., ENSO year [El Niño-Southern Oscillation] or humid
non-ENSO year) and a noneFlowering Desert year (i.e., dry non-
ENSO year) (Pizarro-Araya, 2010). Both Gyriosomus species show
sexual dimorphism where males are smaller than females. In
addition, G. batesi are bigger than G. subrugatus (J. Pizarro-Araya
pers. obs.).

We report how features of the environmental thermal resources
affect the patterns of activity of the predator (C. maculatus) and its
prey (G. batesi and G. subrugatus).We predict that the restrictions or
variations in temperature affect mainly the activity of insects
(Gyriosomus species) due to differences in body size (sexual
dimorphism and differences between species) and their depen-
dence on environmental conditions, and that this variation in
activity modulates the patterns of activity of the predator.

2. Materials and methods

2.1. Study area

The study was performed during November 2002, in two desert
localities from northern Chile: Chacrita (28�23039.300S,
70�42049.400W, 644 msl) and Algarrobal (28�07045.600S,
70�39036.500W, 428 msl), Vallenar, Huasco Province, Atacama
Region, Chile (Fig. 1). The sites are located on the Algarrobal-

Carrizal basin, which has no permanent superficial water courses.
However, sporadic and intense rains can originate superficial flows,
in some cases torrentially, that flow down its slopes (Luzio and
Alcayaga, 1992). The habitat is a scrubland dominated by the
shrubs Encelia canescens Lamarck, 1786 (Asteraceae), and Sky-
tanthus acutus Meyen, 1834 (Apocynaceae) (Squeo et al., 2008). In
a typical year, the vegetation is limited to an association of
Euphorbia copiapina Philippi, 1858, Skytanthus acutus Meyen, 1834,
Encelia tomentosa Walpers, 1840 (Gajardo, 1993). During the
Flowering Desert, an explosion of biodiversity promotes high lizard
and arthropod abundances, mainly of coleopteran tenebrionids, as
a result of the high productivity and availability of food resources in
the environment (Pizarro-Araya et al., 2008).

2.2. Daily activity

Sites were continuously walked along parallel 100 m transect
lines during the entire daily active period of lizards and insects
(09:00 AM to 08:00 PM). The transects were walked in opposite
directions to minimize the probability of repeatedly observing the
same individual. Immediately after observation, the following data
were recorded: time of the day, species, sex, air temperature
(10 cm above the substrate, Ta), and substrate temperature (in
contact with the surface, Ts) with a UNI-T M-890C thermometer
(� 0.1 �C). Sex in these individuals is easy to determine because in
the case of lizards, males present a red-orange coloration in the
chest that females do not have (Donoso-Barros, 1966; Vidal and
Ortiz, 2003); in the case of tenebrionids, females are bigger than
males (Aalbu et al., 2002). The species of Gyriosomus were deter-
mined using keys of the Kulzer (1959) and comparing the speci-
mens with material preserved in the Museo Nacional de Historia
Natural (MNNC, Chile).

2.3. Thermal physiology

A total of 66 lizards (C. maculatus 30 males, 36 females) and 204
tenebrionids (G. subrugatus: 85 males, 53 females; G. batesi: 31
males, 35 females) were captured. After capture, the following data
were recorded: species, sex, body temperature (Tb: cloacal
temperature for lizards with a Cu-constantan thermocouple (Cole
Parmer� thermometer, � 0.1 �C) and subelytral cavity temperature
for tenebrionids (with a UNI-T M-890C thermometer, � 0.1 �C)

Fig. 1. Geographic location of the study sites. Insert: The main map corresponds to the dark area of the general map of Chile.
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according to Duncan (2003), air temperature (Ta: 10 cm above the
substrate), and substrate temperature (in contact with the sur-
face, Ts). Both thermometers were calibrated before taking the field
measurements. Lizards were weighed (g) and body length (mm)
was measured in each insect. Subsequently, the animals were
released.

2.4. Statistical analyses

Prior to statistical analyses, all data were examined for
assumptions of normality and homogeneity of variance, using
KolmogoroveSmirnov and Levene’s tests, respectively. The anal-
yses of the differences inweight (lizards) and body length (darkling
beetles) between sexes were performed by means of a one-way
analysis of variance (ANOVA). A one-way ANCOVA was used to
determine differences in body temperature between sexes in
relation to air and substrate temperatures, with weight (lizards)
and body length (insects) as covariate (Sokal and Rohlf, 1995), fol-
lowed by Tukey tests for differences between the species. The
thermoregulatory ability was estimated from the variances of Tb
and from the slopes of the linear regressions (Sokal and Rohlf, 1995)
between Tb vs. Ta, and between Tb vs. Ts (Huey, 1982). A slope equal
to one indicates that animals are completely thermoconformers
(Cortés et al., 1992).

3. Results

A total of 66 lizards (30 males, 36 females) and 700 tenebrionids
(G. subrugatus: 356 males, 141 females; G. batesi: 126 males, 77
females) were observed during sampling. The weight (for lizards),
length (for insects), and temperature measurements of the
different species and sexes are shown in Table 1. A one-way ANOVA
considering sex as a factor (on weight and length) indicated that
males of C. maculatus were significantly larger than females
(F(1,64) ¼ 7.297, P ¼ 0.0088) while among Gyriosomus species,
females were significantly larger than males (G. subrugatus:
F(1,136) ¼ 136.79, P ¼ 0.0001; G. batesi: F(1,64) ¼ 119.28, P ¼ 0.0001).

The daily activity of the three species is shown in Fig. 2.
Although C. maculatus shows a bimodal activity, both prey species
disappear when air temperatures exceed 40 �C, showing dis-
continued and bimodal activity. Significant differences in activity
were recorded between the three species studied (F(2,106) ¼ 11.27;
p ¼ 0.0003). Gyriosomus species differ in starting activity time
schedule (p < 0.001), with G. subrugatus (smaller species) begin-
ning its activity (10:00 AM) before G. batesi (larger species; 11:00
AM) and C. maculatus (11:00 AM). In the afternoon, the activity
occurs in the opposite direction. When analyzing the sexes sepa-
rately, significant differences in activity are found where insect
males tend to be more abundant at the beginning and end of the
day, while the lizards there is a contrary trend (P ¼ 0.019; Fig. 2).

The mean body temperature of C. maculatus was 39 �C, both
sexes with similar temperatures (P ¼ 0.296), whereas that of
G. subrugatus was 24 �C, without differences between sexes
(P ¼ 0.119) and G. batesi was 27 �C (P ¼ 0.292). Body temperature

Table 1
Mean� standard error for weight (W, Callopistes maculatus), body length (BL, Gyriosomus species), body temperature (Tb), air temperature (Ta), and substrate temperature (Ts)
on three species from the Flowering desert. n: sample size, M: male, F: female.

n W(g)/BL(mm) Tb Ta Ts

Species M F M F M F M F M F

C. maculatus 30 36 37.25 � 1.9 31.03 � 1.4 38.28 � 0.8 39.61 � 0.9 25.03 � 0.7 24.82 � 0.7 50.28 � 2.3 51.47 � 2.8
G. subrugatus 85 53 13.25 � 0.1 15.42 � 0.1 25.25 � 0.3 22.68 � 0.5 24.30 � 0.2 22.17 � 0.4 27.09 � 0.2 25.12 � 0.4
G. batesi 31 35 13.98 � 0.3 19.24 � 0.3 27.20 � 0.3 26.05 � 0.6 27.9 � 0.3 26.06 � 0.6 31.15 � 0.4 28.65 � 0.7

Fig. 2. Daily activity (for sexes) of the prey Gyriosomus subrugatus and Gyriosomus
batesi and their predator, Callopistes maculatus. It indicates air (TA) and substrate
temperature (TS) during daily activity.
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showed similar ranges and standard deviations in both sexes in
invertebrate species, as well as lizard species (Table 1). There were
no significant differences between males and females in the rela-
tionship Tb versus Ta (C. maculatus: P ¼ 0.195; G. subrugatus:
P ¼ 0.219; G. batesi: P ¼ 0.221) and Tb versus Ts (C. maculatus:
P¼ 0.846; G. subrugatus: P¼ 0.820; G. batesi:, P¼ 0.327). The slopes
of the regression lines of Tb versus Ta and Tb versus Ts were equal to
zero for both sexes of C. maculatus, making it a thermoregulator
(Fig. 3). Gyriosomus species instead showed slopes different from
zero for both sexes because they are thermoconformers (Figs. 4
and 5).

4. Discussion

Ecological theory postulates that energy availability affects
population densities (Sutherland, 1983). However, energy acquisi-
tionmay entail costs that differ in time and in space. In the past two
decades a large volume of research has focused on foraging trade-
offs, the interplay between the need to acquire energy by foraging
and the costs incurred in this life-sustaining activity (e.g., Fedriani
and Manzaneda, 2005). Few of the numerous studies on inter-
specific interactions address the patterns of resource availability
and their possible role in community structure (e.g., Kneitel and
Chase, 2004) or their behavior (Chown and Nicholson, 2004).
Resource availability is a significant variable in ecological interac-
tion, both as a lead force in population dynamics and indirectly
through dial, seasonal, and spatial variations in habitat use. In the
Atacama Desert we find potential relationship between availability
of resource patterns and predator behavior, where prey

(thermoformer and restricted in their daily activity), could deter-
mine the behavior of a predator (thermoregulator) during their
daily activities, although this study did not examine the direct
relationship between the two behaviors. Gyriosomus species, as all
endemic South American tenebrionids, have not been studied
insofar as thermal behavior is concerned, so the information
provided by this study is a first approximation to the understanding
of their physiology in desert habitats.

Fluctuations in environmental temperatures between day and
night, and seasonal temperatures in arid environments are wide;
hence organisms have to deal with these changes so as tomaximize
their activity periods to cope with low prey density and survive in
these harsh habitats (Al-Johany and Al-Sadoon, 1996). In the Chil-
ean Desert, thermal changes between day and night are abrupt
(Khodayar et al., 2008), which suggest that organisms could face
restrictions for its maintenance in this desert. For C. maculatus
(predator in this desert system), thermal restrictions may be
irrelevant. In fact, despite showing a bimodal activity typical of
lizards from temperate environments, it shows a high activity
during the hours of greatest heat. In contrast, both Gyriosomus
species (considered prey in this system) show a narrower activity
during the hours of higher temperature (40 �C), although their
activity ranges from 24 C in G. subrugatus, to 27 C in G. batesi. The
key to the survival of Tenebrionidae and other beetles in dry
environments consists in avoiding climatic extremes as far as
possible through a combination of refuge against the most adverse
conditions, morphological adaptations, behavior, and specialized
physiology (Cloudsley-Thompson, 2001). On the other hand, insects
are not the only prey of C. maculatus, since the lizards of the genus
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Fig. 3. Relationship between (A) body and air temperatures, and (B) body and substrate temperatures in males and females of Callopistes maculatus. The slopes (b) and r values are
indicated.
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Liolaemus, which are blooming desert moments of great abun-
dance, are also prey to the reptile (Vidal and Ortiz, 2003). In these
cases, prey lizards have clear bimodality daily activity patterns, but
also thermoregulatory (Cortés et al., 1992). This fact suggests that
perhaps the alleged link between daily activities Callopistes with
insect prey, are also related to the lizards’ prey. However, it is
important to note that, according to Cortés et al. (1992),
C. maculatus is dependent thermally during the autumn-winter,
unlike lizards of the genus Liolaemus, opening a new possibility
to study to try to determine a direct relationship between prey and
predator pattern.

Whereas thermal responses are primarily behavioral, adapta-
tion responses to aridity are mostly physiological. In fact, desert
beetles avoid desiccating environments in various ways, tolerate
transient fluctuations in the ionic composition of their haemo-
lymph, restrict water loss through a combination of ecological
adaptations and physiological processes, and use moisture
obtained opportunistically from a variety of sources (Cloudsley-
Thompson, 2001; de los Santos and de Nicolas, 2008). Other
desert beetles, such as Gyriosomus species in the Atacama Desert,
avoid the heat of the sun by hiding in vegetation or under stones, or
burying themselves deeply in the substrate (Ward and Seely, 1996).
Other studies on tenebrionid populations frequently emphasize
structural modifications such as the length and form of the legs
(Krasnov et al., 1996) of the subelytral cavity (Duncan, 2003), and
body size (Holland et al., 2005) as adaptations to microclimate and

edaphic factors. The typical morphological adaptations of desert
Tenebrionidae were listed by Marcuzzi (1960) as follows: (1)
increase in the volume of the subelytral cavity; (2) an unusually
dark-colored integument; (3) fossorial legs in both larvae and
adults; (4) large body size; (5) shortening and broadening of the
bodies of the larvae. Also, heat may be gained or lost by conduction,
convection, and radiation. In the case of surface-living desert
beetles, heat exchange by conduction can largely be ignored
because only very small areas of the tarsi are normally in contact
with the substrate (Koch, 1961). In contrast, heat exchange by
convection is very important (Turner and Lombard, 1990).

In this way, the daily activity of many beetle species has been
described as thermally opportunistic (i.e., thermoconformer)
because the insects show variable activity patterns associated with
a range of air temperatures (Cooper, 1993) or climates (Scholtz and
Caveney, 1992) which modulate other behaviors such as feeding
during the morning, breeding, and dispersal in the afternoon. An
important consideration should be made here. The fact that insect
species (G. batesi and G. subrugatus) show bimodal daily activity
could be explain the behavior of C. maculatus (predator) in the
sense that this could adjust its daily activity to that of the prey. Dial,
lunar, and seasonal patterns in predation risk seem to affect
foraging activity patterns and foraging microhabitat use to mini-
mize risk (Mandelik et al., 2003). Reproductive success is probably
more important for Gyriosomus than the risk of predation by
C. maculatus.

Fig. 4. Relationship between (A) body and air temperatures, and (B) body and substrate temperatures in males and females of Gyriosomus subrugatus. The slopes (b) and r values are
indicated.
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5. Conclusions

According to Stevenson (1985), ectotherms use behavioral
mechanisms to find appropriate thermal conditions within their
environments because their metabolic rates and other physiolog-
ical mechanisms are usually insufficient to control body tempera-
ture under a single set of environmental conditions. For Gyriosomus
species, the inability to properly thermoregulate could have
a deleterious effect, e.g., impaired development, compromised
mobility, ineffective foraging, poor predator evasion, and unsuc-
cessful mating, so behavioral thermoregulation is a highly effective
method of maintaining preferred body temperatures. Although
C. maculatus prey on these species because of their high abundance
and low thermoregulatory capacity, C. maculatus could be consid-
ered an efficient predator.
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